Agronomic and Cultural Information

Planting: Drill-planted Cocodrie @ 90 lb/A into League soil (pH 5.5, sand 3.2%, silt 32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on May 3
Plot size = 7 rows, 7 in. row spacing, 18 ft long with metal barriers around plots
Emergence on May 14

Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on May 4
Note: Plots were flushed as needed from emergence to permanent flood
Permanent flood on Jun 14

Fertilization: All fertilizer applied by hand
113.3 lb N/acre (2/3 of 170) on May 4 at planting
56.7 lb N/acre (½ of 170) on Jun 7 at permanent flood
56.7 lb N/acre (½ of 170) on Jun 28 at panicle differentiation
40 lb N/acre on Jul 25 at late boot/heading
(Total season N/acre = 266.7 lb N/acre)

Herbicide: Stam 80EDF @ 2.0 lb, Basagran @ 0.75 lb, Facet 75DF @ 0.25 lb and Ordram @ 2.0 lb (AI)/acre and Agri-Dex @ 1.0 pt/acre with a 2-person hand-held spray boom (13-80015 nozzles, 50 mesh screens, 21 gpa final spray volume) on May 26 for early season weed control

Treatments: Treatments 1 through 5 (granulars) applied by hand 3 days after flood (DAF) on Jun 17
Treatment 6 (Mexico formulation) applied by hand 9 DAF on Jun 23
Note: The Mexico formulation was the texture of talcum powder and had a tendency to cling to foliage. We brushed foliage after application to force the product onto the water surface.

Sampling: Rice water weevil (RWW) cores (5 cores per plot, each core 4 in. diameter, 4 in. deep, containing at least one rice plant) were collected on Jun 7 and 18, washed through 40-mesh screen buckets and immature RWW counted.
Note: Prior to analysis RWW core data transformed using $\sqrt{x + 0.5}$

Harvest: Harvested plots on Sep 2
Size harvested plot = 7 rows, 7 in. row spacing, 18 ft long
Yields converted to lb/acre adjusted to 12% moisture
Note: All data analyzed using ANOVA and LSD
Additional Etofenprox Formulations for Rice Water Weevil Control. Beaumont, TX. 2005

Discussion

All treatments applied 3 days after flood (DAF) significantly reduced immature rice water weevil (RWW) populations on both sample dates compared to the untreated (Table 1). Populations of immature RWW on both sample dates in the untreated were above the economic injury level (about 15 immature RWW/5 cores); however, untreated populations were not as high as untreated populations in the other etofenprox small plot studies. Mexico Trebon 1.5G was not effective, probably due to the late application (9 DAF). Yields were not significantly different among the treatments but untreated plots yielded less than the other treatments.

Table 1. Additional etofenprox formulations for rice water weevil (RWW) control. Beaumont, TX. 2005

<table>
<thead>
<tr>
<th>Trt. no.</th>
<th>Treatment</th>
<th>Rate [g (AI)/ha]</th>
<th>Timing</th>
<th>No. immature RWW/5 cores</th>
<th>Yield (lb/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MTI-500 1.5G</td>
<td>200</td>
<td>3 DAF(a)</td>
<td>11 a</td>
<td>8607</td>
</tr>
<tr>
<td>2</td>
<td>Odom sand 1.5G</td>
<td>200</td>
<td>3 DAF</td>
<td>17 ab</td>
<td>8488</td>
</tr>
<tr>
<td>3</td>
<td>Odom sand 3.0G</td>
<td>200</td>
<td>3 DAF</td>
<td>18 b</td>
<td>8477</td>
</tr>
<tr>
<td>4</td>
<td>Odom clay 1.5G</td>
<td>200</td>
<td>3 DAF</td>
<td>15 ab</td>
<td>8426</td>
</tr>
<tr>
<td>5</td>
<td>Odom clay 3.0G</td>
<td>200</td>
<td>3 DAF</td>
<td>11 ab</td>
<td>8826</td>
</tr>
<tr>
<td>6</td>
<td>Mexico Trebon 1.5G</td>
<td>200</td>
<td>9 DAF(b)</td>
<td>38 c</td>
<td>8439</td>
</tr>
<tr>
<td>7</td>
<td>Untreated</td>
<td>---</td>
<td>---</td>
<td>36 c</td>
<td>8424</td>
</tr>
</tbody>
</table>

\(a\) DAF = days after flood
\(b\) Mexico Trebon 1.5G material received late and applied 9 instead of 3 DAF
Means followed by the same or no letter are not significantly different (NS) at the 5% level (ANOVA, LSD).