Effect of Etofenprox on Rice Water Weevil Control in a Commercial Field
Cooperating farmer: Bill Dishman, Jr., 409-658-9950
Beaumont, TX
2005

Agronomic and Cultural Information

Planting:
Sierra was drill-planted @ 90 lb/acre into League soil on Apr 29
After emergence metal barriers were constructed separating untreated and etofenprox-treated areas.

Irrigation:
Flushed blocks on Apr 29
Note: Plots were flushed as needed from emergence to permanent flood
Permanent flood on Jun 9

Treatments:
A selected cut of the commercial field was left untreated for rice water weevil.
A second cut was treated with Etofenprox (0.9% blend) at 20 lb prod/acre. The etofenprox was aerially applied by Twin County Air/Ag. Inc. (Jeffrey Leger, 409-296-4300, cell 409-659-6410) 7 days after flood (DAF) on Jun 16.
The remainder of the commercial field was treated with an aerial application of Karate Z before flood (BF) @ 2 oz/acre.

Sampling:
Rice water weevil (RWW) cores were collected on Jun 27 and Jul 11.
At each sample date, six samples of 5 cores each were collected from each treatment area (each core 4 in. diameter, 4 in. deep, containing at least one rice plant). Cores were later washed through 40-mesh screen buckets and immature RWW counted.
Note: Prior to analysis RWW core data transformed using $\sqrt{x + 0.5}$

Harvest:
Hand-harvested plots on Sep 2
Size harvested plot = 3 ft x 5 ft, 3 replications per treatment area)
Yields converted to lb/acre adjusted to 12% moisture

Note: All data analyzed using ANOVA and LSD

See discussion below.
Effect of Etofenprox on Rice Water Weevil Control in a Commercial Field. Bmt., TX. 2005
Cooperating farmer: Bill Dishman, Jr., 409-658-9950

Discussion

Populations of immature rice water weevil (RWW) were very low in the untreated cut on both sample dates. RWW data were not very meaningful and conclusions were not drawn as to the efficacy of the etofenprox applied aerially (Table 1). Yields were very similar among the treatments.

Table 1. Effect of etofenprox on rice water weevil (RWW) control in a commercial field.
Beaumont, TX. 2005

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate</th>
<th>Timing</th>
<th>No. immature RWW/5 cores</th>
<th>Yield (lb/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etofenprox 0.9%</td>
<td>20 lb/acre</td>
<td>7 DAF</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Karate Z</td>
<td>2 oz/acre</td>
<td>BF</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Untreated</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

Six samples (5 cores each) were collected from each treatment area on Jun 27 (21 days after beginning of flood) and Jul 11 (35 days after beginning of flood)

DAF = days after flooding began; at 7 DAF, entire 120 acre field was flooded and water flow between cuts was minimal

BF = immediately before flood

Note: Statistics were not run on these data.