Insecticides and Gibberellic Acid (GA)
Beaumont, TX
2007

Agronomic and Cultural Information

Planting: Drill-planted Cocodrie @ 90 lb/A into League soil (pH 5.5, sand 3.2%, silt 32.4%, clay 64.4%, and organic matter 3.8 - 4.8%) on Apr 23
Experimental design: randomized complete block with 10 treatments and 4 replications
Plot size = 7 rows, 7 inches row spacing, no metal barriers

Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Apr 23
Note: Plots were flushed as needed from emergence to permanent flood (PF)
PF on May 25

Fertilization: All fertilizer (urea) was distributed by hand.
56.7 lb N/acre (1/3 of 170) on Apr 23 at planting
56.7 lb N/A (1/3 of 170) on May 25 at PF
56.7 lb N/A (1/3 of 170) on Jun 12 at panicle differentiation (PD)
40 lb N/A on Jun 28 at late boot/heading
100 lb N/A at ratoon flood on Aug 24
Total main crop urea = 210 lb N/A

Herbicide: Stam 80EDF @ 2.0 lb, Basagran @ 0.75 lb, Facet 75DF @ 0.25 lb and Ordram 8E @ 2.0 lb (AI)/acre and Agri-Dex @ 1.0 pt/acre with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 16 gpa final spray volume) on May 11

Treatments: Blanket application of Karate Z @ 0.03 lb (AI)/A on all plots with a 2-person hand-held spray boom (13- 80015 nozzles, 50 mesh screens, 13 gpa final spray volume) to control rice water weevil on May 30
Treatments 2 – 10 applied on Jul 30 with a hand-held CO₂-pressurized spray boom (3-800067 nozzles, 50 mesh screens, 25 psi, 26 gpa). Rice at beginning soft dough. All treatments contained Latron @ 0.5% v/v.

Harvest: Main crop harvested on Aug 23
Ratoon crop harvested on Oct 31
Size harvested plot = 7 rows, 7 inch row spacing, 18 ft long
Yields converted to lb/A and adjusted to 12% moisture
Note: All data analyzed using ANOVA and LSD

Discussion

Across all treatments, yields were very high in both main and ratoon crops (Table 1). Unfortunately, the experiment was compromised by aerial drift of urea from an adjacent Foundation Seed field. Thus, results are not meaningful. The experiment will be repeated next year.
Table 1. Yield response of rice (main and ratoon crops) to gibberellic acid (GA) and pyrethroids. Beaumont, TX. 2007.

<table>
<thead>
<tr>
<th>Trt. #</th>
<th>Description</th>
<th>Rate</th>
<th>Yield (lb/A)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated</td>
<td>---</td>
<td>9088 ab</td>
<td>3460</td>
<td>12548</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Methyl parathion</td>
<td>1 pt/A (4 lb/gal)</td>
<td>9096 ab</td>
<td>3536</td>
<td>12632</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Karate Z</td>
<td>0.03 lb AI/A</td>
<td>9302 a</td>
<td>3593</td>
<td>12895</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Prolex</td>
<td>0.01875 lb AI/A</td>
<td>9280 a</td>
<td>3568</td>
<td>12848</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mustang Max</td>
<td>0.0225 lb AI/A</td>
<td>9343 a</td>
<td>3329</td>
<td>12671</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Methyl parathion + GA</td>
<td>1 pt/A + 4 g AI/A</td>
<td>8810 bc</td>
<td>3673</td>
<td>12483</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Karate Z + GA</td>
<td>0.03 lb AI/A + 4 g AI/A</td>
<td>8984 bc</td>
<td>3582</td>
<td>12566</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Prolex + GA</td>
<td>0.01875 lb AI/A + 4 g AI/A</td>
<td>9067 ab</td>
<td>3757</td>
<td>12823</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mustang Max + GA</td>
<td>0.0225 lb AI/A + 4 g AI/A</td>
<td>8950 bc</td>
<td>3742</td>
<td>12691</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>GA</td>
<td>4 g AI/A</td>
<td>8701 c</td>
<td>3824</td>
<td>12525</td>
<td></td>
</tr>
</tbody>
</table>

Means in a column followed by the same or no letter are not significantly different (NS, $P > 0.05$, ANOVA and LSD).