Agronomic and Cultural Information

Planting: Drill-planted Cocodrie @ 80 lb/A into Nada soil on Apr 12
Plot size = 6 rows, 7.5 in. row spacing, 16 ft long; no metal barriers
Randomized complete block with 7 treatments and 4 replications
Emergence on Apr 23

Irrigation: Flushed blocks (temporary flood for 48 hours, then drain) on Apr 15
Additional flushes until application of the permanent flood (PF)
PF on May 22
Field drained on Aug 1

Fertilization: 45-45-45 (lbs N-P-K/A) on Apr 13 after emergence
70 lb N/A (urea) on May 21 before permanent flood (BF)
70 lb N/A (ammonium sulfate) on Jun 7 at panicle differentiation
Total season nitrogen = 185 lb N/A

Herbicide: Command 3ME applied @ 0.3 and Propanil @ 2 lb (AI)/A on Apr 24
Arrosolo @ 3.0, Permit @ 0.06 lb (AI)/A on May 21

Treatments: All plots sprayed with Mustang Max @ 0.025 lb (AI)/A on May 21
(immediately before PF for RWW control)
Treatments 2, 3, 6 and 7 were applied at ¼ inch panicle on Jun 15
Treatments 4, 5, 6 and 7 were applied at late boot on Jul 9
Treatments 2 – 7 were single application foliar sprays applied with a hand-held, CO₂-pressurized spray boom (3- 800067 nozzles, 50 mesh screens, 25 psi, 28 gpa application rate)

Sampling: No evidence of stem borers on Jun 15 (rice at ¼" P); some South American rice miner damage
Middle 4 rows of each plot were inspected for whiteheads (WHs) and panicles counted in 3, 1 ft row samples/plot on Aug 3
Prior to analysis of WH counts, data were transformed using $\sqrt{x + 0.5}$

Harvest: Harvested plots with small plot combine on Aug 13
Size harvested plot = 6 rows, 7.5 in. row spacing, 16 ft. long; yields converted to lb/A and adjusted to 12% moisture
Note: All data analyzed using ANOVA and LSD
Discussion

Unfortunately stem borer damage was low in the experiment. Only 11 whiteheads (WH) per plot were found in the untreated (Table 1). Number of lesions per 3 ft of row was also low. Although yields were not significantly different, the average yield of insecticide-treated plots was 606 lb/A more than the untreated. Thus, even relatively low damage by stem borers can result in considerable yield loss. The experiment will be repeated in 2008 at Ganado where stem borer populations are generally higher than at Eagle Lake. The data collected in 2007 will be combined with data from subsequent years to generate treatment thresholds for stem borers.

Table 1. Economic injury level for stem borers in rice. Eagle Lake, TX. 2007.

<table>
<thead>
<tr>
<th>Trt. #</th>
<th>Description</th>
<th>Rate lb AI/A</th>
<th>Timinga</th>
<th>No. WHs/plotb</th>
<th>No. lesions/3 ft of row</th>
<th>Yield lb/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated</td>
<td>---</td>
<td>---</td>
<td>11 a</td>
<td>2 a</td>
<td>6920</td>
</tr>
<tr>
<td>2</td>
<td>Karate Z</td>
<td>0.015</td>
<td>1-2" P a</td>
<td>10 a</td>
<td>2 a</td>
<td>7459</td>
</tr>
<tr>
<td>3</td>
<td>Karate Z</td>
<td>0.030</td>
<td>1-2" P</td>
<td>5 ab</td>
<td>1 ab</td>
<td>7787</td>
</tr>
<tr>
<td>4</td>
<td>Karate Z</td>
<td>0.015</td>
<td>LB b</td>
<td>3 b</td>
<td>0 b</td>
<td>7464</td>
</tr>
<tr>
<td>5</td>
<td>Karate Z</td>
<td>0.030</td>
<td>LB</td>
<td>7 ab</td>
<td>0 b</td>
<td>7210</td>
</tr>
<tr>
<td>6</td>
<td>Karate Z</td>
<td>0.015 + 0.015</td>
<td>1-2" P + LB</td>
<td>6 ab</td>
<td>0 b</td>
<td>7583</td>
</tr>
<tr>
<td>7</td>
<td>Karate Z</td>
<td>0.030 + 0.030</td>
<td>1-2" P + LB</td>
<td>3 b</td>
<td>0 b</td>
<td>7651</td>
</tr>
</tbody>
</table>

*P = panicle; LB = late boot.
No. per 4 middle rows/plot.
Means in a column followed by the same or no letter are not significantly different (NS, \(P > 0.05 \), ANOVA, LSD).